Archive | Floating Forests RSS for this section

Have a Kelpy Holiday

From all of us here at Floating Forests, hope you’re having a great holiday! And after some time with the tree, nog, or after the menorah has burned down, join the over 3000 other folk out there and help us hunt down some kelp!

And thanks to FF Fan Jenn Burt for an image that sums it all up.



Color Corrected Images Back!

Welcome back to Floating Forests! We’ve had a few snafus that have been lowering the image quality that folk have mentioned, and we’ve got them locked down! What issues, some of you might be saying? During an image upload, something got snagged in the color translation, so images were coming out looking dark and red. Some users (thanks, artman40!) were quite skilled at seeing the kelp anyway. Hats off to you!

Yeah, that's not an easy one. Interestingly, if you selected the image area, the scene pops out clearly.

Yeah, that’s not an easy one. Interestingly, if you selected the image area, the scene pops out clearly.

We’re actually kind of excited about this, as it will give us a second validation dataset so we can really calibrate user views of images under different conditions. Some of the images that we have up there have been previously been viewed by research assistants (undergrads) at UC Santa Barbara. Part of our analysis of the data involves calibrating against any noise of different viewers looking at the same image. Now we’ll have three different classifications types for a set of the images – undergrad RAs, Floating Forest users, and Floating Forest users with a color-skewed dataset. It’s going to help us reduce error of estimation of kelp bed size and get better quality data in the end as we build better models of the data. There’s actually a nice article on just this topic in last month’s issue of Methods in Ecology and Evolution (one of my favorite journals!) (what, don’t look at me that way, I’m a scientist!)

A number of folk have asked us about the color skewing, and also asked us about the algorithm we use to select images. Stay tuned, as we’re working with Zooniverse to release the code they use to select images, and then anyone who is interested in having at it – either for their own applications (say, spotting coral reefs in the tropics, and needing to subset out only coastal images) or who is interested in trying to make our process better (and reduce the number of land images while not losing coastline images). We’d love to collaborate with more folk out there!

Evaluating mutualism between fish and large brown macroalgae

We just finished a three year project in which we developed a series of mensurative and manipulative experiments on different sites along the Central-Northern Coast of Chile. Study sites on the project where selected under different parameters such as open access areas (meaning that anyone can go and get fish and seafood) and protected areas called areas of management and exploitation of benthic resources (AMEBRs) where there are fishermen who care for benthic resources and only they can catch them. To measure the state of kelp forest and the relationship between the brown seaweed and fish, 4 scientific divers with various tasks recorded and monitored kelp forests of these sites twice a year for three years.

a) kelp in good condition in MEABRs and b) in open access for fishing sites. Photos A. Pérez-Matus

a) kelp in good condition in MEABRs and b) in open access for fishing sites. Photos A. Pérez-Matus

The results obtained by these divers were very interesting, the AMERBs sites have more adult and juvenile brown macroalgae per unit of area, and adult plants are larger, because they have more foliage. At these sites there is also a greater number and biomass of fish, all in comparison with the forest of brown macroalgae of free access sites for fisheries. Free access sites had a higher number of grazers like sea urchins and snails and small herbivores that eat brown macroalgae. To evaluate these results in field, experiments where set up to estimate the growth of the blades of brown macroalgae Lessonia trabeculata (see figure 1a) in the presence and absence of herbivorous snails measuring over months. The seaweed in the presence of this snail not only stopped growing, but also declined (see figure 1b). The next step was to experiment in the laboratory the feeding behavior of the herbivores in the presence and absence of potential predators (fish) for this aquarium with herbivores and macroalgal tissues were used. The experiment showed that snails fed less in the presence of fish. The mere presence of fish caused snails to climb to the top of the aquarium and spend more time there. Then it was confirmed that fish generate indirect positive effects on the brown macro algae.

Other positive direct effects of fish on brown macroalgae were also evaluated. In the laboratory, it was confirmed that in the presence of fish and filter feeders such as mussels, macroalgae are kept in better condition. They do not lose their blades (leaves) and grow faster than seaweed that only had the presence of filter feeders. The nutrients that fish generate as particulate organic material are dissolved by the filtering procedure of mussel then are used by macroalgae. It turned out that the seaweed benefits from the nutrients provided by the fish and accelerate their growth.

Figure showing the experiments herbivory on reproductive tissue of the kelp Lessonia tabeculata by the herbivore “jerguilla”, Aplodactylus punctatus: a) experimental mesocosms; b) delivered algae as food; c) indicates consumption and bites by adults jerguillas. Pictures from Catalina Ruz.

Figure showing the experiments herbivory on reproductive tissue of the kelp Lessonia tabeculata by the herbivore “jerguilla”, Aplodactylus punctatus: a) experimental mesocosms; b) delivered algae as food; c) indicates consumption and bites by adults jerguillas. Photos from Catalina Ruz.

The brown macroalgae generate different services to the fish species, providing habitat for early stages of fish and food indirectly (many fish feed on small crustaceans such as amphipods, gastropods, isopods inhabiting kelp) and directly, as their own tissues are food for herbivorous fish. Herbivorous fish can consume algal reproductive tissues. In these tissues spores live; spores are the seeds of macroalgae. We found that these reproductive tissues that were consumed by fish herbivores may reduce the epiphytic (seaweed on tissues) and chemical load that are produced in these tissues (to deters small herbivores). The seeds of the algae can be released more quickly once passes through the digestive tract of fish and may supply more nutrients for growth. We also found that the seeds are viable and germinated with the same speed as those of reproductive tissue control. Herbivorous fish can be vehicles that disperse seeds macroalgae as these spores have very little mobility (see the photos of the experiments).

This research project may generate different conclusions. One is that as the brown macroalgae are important habitat and food for fish species. The fish in turn provide benefits to macroalgae. The importance of fish is notorious and is expressed at different spatial scales (1 m to km) where the presence of fish and other agents can modify the landscape. We can conclude that in the absence of fish, macroalgae lose their condition (assessed as foliage and growth), which could bring significant consequences for artisanal and recreational fishing. Also, there are no management plans in Chile led to the fish. Considering the importance of these coastal environments, consequences will be negative to kelp ecosystems if limitations for catching reef fish in Chile do not apply.

Open Ocean Kelp Forest?

Talk about serendipitous discoveries! Superuser artman40 recently posted an image on the discussion boards with a question, is this kelp out in the middle of the ocean?


The answer is YES! There is a kelp forest located about 100 miles off the coast of San Diego, CA, on a seamount known as the Cortez Banks. Many of you may have already heard about this place as it is one of the premier sites for big wave surfing in the world, with waves over 80 ft high! Check out this video:

While this was a surprise for us, spear fishers and sea lions have known about this spot for years! Check out this video where you can clearly see giant kelp:

With this new information we can begin to look more closely at this very unique kelp forest and ask interesting questions like: How often is this forest present? How does kelp get there? How are ocean circulation patterns affecting kelp’s presence and growth?

And we couldn’t have done it without YOU, our awesome citizen scientists! Great job FloatingForests team!

Polish Floating Forests!

No, there’s no giant kelp in Poland (sorry) BUT a generous volunteer has translated our entire site into Polish! So check it out by going to the site, clicking the globe, and selecting Polski, and then ODKRYWAJ PŁYWAJĄCE LASY!

Screen Shot 2014-08-29 at 1.36.53 PM

The Floating Forests Origin Story

Every great thing in this world has an origin story, right? Here’s ours.

Years ago, I was a postdoc at the Santa Barbara Coastal Long-Term Ecological Research Site (SBC LTER) working on the links between waves, kelp, and food webs. I had this problem. Big waves came through in the winter and removed a lot of kelp. Only, we only had divers going out in the summer, by which time kelp had often recovered, so I couldn’t estimate how much damage had been done.

Enter the brilliant Kyle Cavanaugh. As a grad student, he was pushing the limits on how we use satellite imagery for marine science. He’d devised a way to use imagery from Landsat, stretching back into the 1980s, to see giant kelp forest canopies from space. Better still, as every area around the earth was photographed about twice a month, this meant that he could see the forests I was analyzing right after storms hit them.

Fig 1 from Kyle's Original work on kelp & Landsat

Fig 1 from Kyle’s Original work on kelp & Landsat

So, we struck up a collaboration to use the Landsat data he was collecting (paper here) to bring in the wave story. It was fantastic, and led to a wonderful collaborative paper.

And that could have been the end of it.

Except…there was this niggling thing. Landsat has images of the whole globe. And Giant Kelp isn’t just in California, but rather it’s found in areas all over the planet. Could we look at giant kelp across the planet?

As other members of the lab Kyle was in moved forward, they slowly expanded the dataset to include Baja, Northern California, and more. Why slow? Well, turns out, computers can’t just scan an image and tell you where the kelp is. Kelp looks like a lot of things in those pictures – like parts of the land, like clouds, like sea foam. But, to the human eye, it has some pretty distinct patterns in where it is and how it clumps together. The Siegel lab had setup a great pipeline of undergraduates who looked over the images, circled where kelp was, and then sent it back to grad students and computers to determine how much was there.

It took years just to get California. The globe seemed impossible.

A few years later, this came up while Kyle and I were seated in a room of amazing kelp forests scientists. We were at the National Center for Ecological Analysis and Synthesis for a working group on kelp forests and climate change. One of the tasks we had assigned ourselves was to build a global database of all of the kelp forest monitoring data out there. We found a number of wonderful datasets – some stretching into the 1970s, and one even into the 1950s. But all of these sets were limited to just a handful of sites. And there weren’t many of them.

What to do?

The NCEAS Kelp Forests and Climate Change working group

The NCEAS Kelp Forests and Climate Change working group

A few project members brought up Kyle’s Landsat data, but, expanding to the globe seemed daunting – until we realized that there might be a way to harness the power of the Crowd. I’d recently read Nielsen’s Reinventing Discovery where he talked about a project called Galaxy Zoo. In Galazy Zoo, astronomers had folk look at pictures of hundreds of thousands of galaxies and help them classify them into types. Along the way, citizen scientists not only had a good time, but even made some discoveries of types of celestial objects never before recorded.

Why not tap the power of folk interested in our oceans? Maybe we could provide images of coastlines that many people had never seen – to set them up as explorers of a potentially kelpy world, and help us get data along the way? People could see not only the kelp forests that might be lurking in their back yard, but discover features and forests in places we’d hardly ever been able to look before.

So, we emailed Zooniverse. It wasn’t their regular time to receive new submissions, but they wrote back right away, very excited. We put together a crackerjack team of scientists from our working group, and submitted an application to be a project, and as the next round swung around, they selected us to take part! We built a small science team from our larger network (who is still pretty active in the whole process!), began conversations with the Zooniverse team after going to their marvelous conference in Chicago, and we were off!

From that point on, it’s been smooth sailing to the great site you see now letting you sail the seas of Floating Forests (from space!)

Tips and Tricks for Error-free Classification!

Hi! My name is Tom Bell and I am a scientist with Floating Forests. For the past 3 years, I have been working with Landsat images to estimate giant kelp biomass along the California and Baja California coasts. I have also had the opportunity to advise over 20 undergraduate analysts at the University of California, Santa Barbara to help process these images.

face_pic_sq One of the great things about Floating Forests is that image processing has been simplified so that users need very little training before they are off and running. However, this does not mean that every image will present a straightforward classification. Today, I want to take you through some common kelp classification errors and give you some tips on how to determine if that the questionable blob is kelp.

First lets start with the natural history of giant kelp and the general characteristics of the environment where it exists. Giant kelp is a coastal marine alga that forms dense stands in the Eastern Pacific, as well as off the coasts of South Africa, Australia, and New Zealand. Giant kelp anchors itself to the sea floor using a holdfast that tightly grips onto hard bottom, like a rocky reef. Kelp fronds can grow up to 45 meters long, but the maximum depth for an individual is about 30 meters, this is due to the limited sunlight where the newly settled microscopic kelp begin to grow. Waves are a major destructive force to kelp forests and can set its nearshore limit along rocky coastlines.

So now that we know the environment where kelp exists, we can use this information to better inform our kelp classification decisions. Let’s go through a few examples!



See these white (sometime blue) blobs along the coast? These are breaking waves. We know that breaking waves can be a major destructive force on a kelp forest, so you usually don’t see kelp where you see breaking waves. Remember, kelp forests will show up as green blobs. You can clearly see this large kelp forest growing just outside of the breaking waves.



This sure does look like a dense kelp forest, bright green blobs right off the coast, but in fact these are tidal mudflats. This can be one of the most difficult issues you may face. Algae or seagrass growing on these mudflats is going to show a similar green color as kelp, but we know that giant kelp only grows on hard seafloor, like rocks and boulders.

Screen Shot 2014-08-20 at 4.45.44 PM

One way to make sure this is the right type of habitat for giant kelp is to use Google Maps or Google Earth. You can click on the coordinates above each image to automatically take you to a new page showing the approximate area of that image. Then, I like to copy just the coordinate numbers and paste them into the Google Maps search bar like, ‘38.557, -123.300’, this will place a pin on that exact location and show you a satellite image of the area with better spatial resolution.



Small islands off the coast can sometimes appear to be dense kelp forests. Again, if you are unsure, I recommend using the Google Maps trick I explained above. You should then be able to confirm whether or not the green blob is kelp or a small rock/island.



Giant kelp will never be growing in inland lakes or water bodies. This is a coastal marine species. If you see a green blob in a lake or some kind of inland river/delta/estuary/bay, it is probably something cool, but it is definitely not giant kelp. Again, if you are unsure, use the Google Maps link to see if the body of water you are looking at is coastal ocean or a lake/river/canal.

That is all for today! I am having a great time interacting with everyone on Zooniverse Talk, please keep the questions coming!

Out of Images? Not so Fast…

Screen Shot 2014-08-13 at 1.57.31 PM

A number of you have been getting this message – either on login or when clicking through images.

Are we really done?

In short, no.

Basically, you all have been too amazing, and have gone through images far faster than we anticipated. We started with a number of Landsat scenes from California and Tasmania from 2012-2014 last Thursday. We thought it would take at least until Wednesday to get through that, and in that time, we’d have the rest of the California and Tasmania images chopped up and ready to go.

How wrong we were.

By Friday, the Zooniverse folk were scrambling to get the rest of the California and Tassie images into the system. And now you all are blowing through those, too! We had a beautiful artful roll-out plan for the entire globe that would stretch out over the course of the year. Clearly, we were wrong.

So, via Twitter we reached out to the NASA Landsat folk who put us in contact with the USGS Landsat folk who maintain the data, and we’re trying to see if we can fast track data acquisition. We’ll keep you posted.

But, now, we do have new data that the Zooniverse folk have put into the system (faster than anticipated because you all are awesome), and more on the way, so fear not! If you get the above message, it’s just a minor glitch that should go away shortly. Hit reload once or twice, and you should be all good!

Welcome to Floating Forests!

Welcome to the blog for Floating Forests! We’re totally excited to bring you into our kelpy world! What do I mean? Well, we’re a team of scientists (more on that later) who are trying to discover whether the amount of Giant Kelp in the world is changing. And we need *you* to help us.

073114-kelp-630Wait, Giant Kelp?

Yes, Giant Kelp! I’m talking about Macrocystis – a HUGE brown alga that can grow over 100 feet (that’s 33m) with its fronds laying across the surface of the ocean. It’s found in close to shore in colder waters – California, Chile, Tasmania, and more. Divers love it. Diving in a mature forest is like being in the Redwoods. All kinds of sea life love it, too, as it grows incredibly fast and sloughs off a lot of material for grazers to munch on every day. Kelp forests are a huge providers of services and benefits for oceans wherever they occur.

So if the amount of kelp and kelp forests in the world was changing, there could be all sorts of consequences for the services our coastal oceans can provide.

Why might it be changing?
There are a lot of reasons the amount of Giant Kelp in the world might have shrunk or grown over the past few decades: Climate change, coastal urbanization, changes in kelp-munching urchins, to name just a few. But we just don’t know.

Kelp washed up on a beach after a strong El Niño. Photo courtesy of the SBC LTER.

Kelp washed up on a beach after a strong El Niño. Photo courtesy of the SBC LTER.

While some awesome research programs have gone out and measured change in kelp over time at a small handfull of places, Giant Kelp is found throughout the world – often in places researchers seldom can get in the water, such as the sub-Antarctic Islands.

So, why don’t you know if the amount of Giant Kelp in the world is changing already?
Well, scientists have been monitoring Giant Kelp in some places for years. But only a few places where they can get constant good access to dive sites. And even in many of those places, by ‘years’ I mean ten, or twenty. So, something like long-term records of kelp abundances on the sub-Antarctic Islands? Nope. We’ve got nada. Heck, there are even areas in California or Chile where people have been working for decades, but are too difficult to access, so we don’t have any data.

But we have a solution. We can see Giant Kelp from space.

Kelp from space?
Kelp! From! Space! We’re very excited.

An image from some of Kyle's early work on using satellites to see kelp in Santa Barbara, CA.

An image from some of Kyle’s early work on using satellites to see kelp in Santa Barbara, CA.

I’ll post the origin story for this project next week, but in short, Kyle Cavanaugh, while a PhD student at UC Santa Barbara figured out how to see kelp using the Landsat family of satellites. These images provide global coverage back into the early 1980s! We potentially have over 30 years of data, waiting to be pulled out!

Yeah, sure, can’t computers just do this?

Nope. Things like clouds, the crests of waves, sun glint, and more can confuse image recognition algorithms. But people. People can get the job done. And so, we want to take you on a tour of the Giant Kelp forests of the world, and have you help us hunt down when and where kelp exists! Fortunately, the good folk at Zooniverse thought this was as cool of a project as we do, and so they built this amazing platform to help us bring the kelp to you!

OK, I’m interested. But who is this we you keep talking about?


The Science team at the Floating Forests project is a group of researchers who have been working in kelp forests all of their lives. We’re divers, remote sensors, stats monkies, and all around passionate kelp enthusiasts. We’re part of the global Kelp Ecosystem Ecology Network – a network of over 60 scientists working in a wide variety of kelp ecosystems.

This project represents a dream of ours – to look at a wonderful global dataset, but to bring citizen scientists and folk just interested in looking at how their coastlines have been changing into the process with us. We hope you enjoy, and we’re really excited to tell you more about kelp forests and the amazing science that goes on there as this project moves forward!

And thanks again to the amazing team at Zooniverse for making this happen!

Coming soon…KELP!

Stay tuned to this spot as we launch later today!